OPTICAL GAIN FIBER
For Fiber Lasers and Amplifiers

Ytterbium
Ytterbium Polarization-Maintaining
Erbium-Ytterbium Polarization-Maintaining
Erbium-Ytterbium

www.ofsoptics.com
Cladding Pumped Optical Fibers

Erbium-Ytterbium Double and Glass Clad, Erbium-Ytterbium PM Double Clad

These fibers enable fiber lasers and amplifiers with good beam profile characteristics, high wallplug efficiencies, compact footprints, superior reliability, and maintenance-free operation. They also accommodate high energies during pulsed operation and at high repetition rates.

Erbium-Ytterbium (Double Clad)

The single-mode core of this fiber is co-doped with both erbium and ytterbium. It is then surrounded by a silica cladding and covered with a low-index protective coating. The resulting double-clad fiber is used for single-mode fiber lasers and amplifiers operating in the 1530 to 1565 nm range.

Erbium-Ytterbium (Glass Clad)

The core of this fiber is identical to that of the erbium-ytterbium double-clad fiber described above. It is surrounded by a shaped glass inner cladding, which in turn is surrounded by a circular outer glass cladding. This glass-clad fiber is used for single-mode fiber lasers and amplifiers operating in the 1530 to 1565 nm range.

Erbium-Ytterbium PM (Double Clad)

TrueMode-kW cavities are designed to support one of two delivery options. For stand-alone use, single-mode output is efficiently coupled to common 20/400 µm delivery fiber. This provides a cladding-stripped and speckle-free clean output beam, ready for splicing to cabling. For combined use, a compatible output fiber is provided.

Typical Applications

- Construction of multi-watt amplifiers around 1550 nm
- LIDAR, CATV, FTTx, FSOC

Features and Benefits (EY Double and Glass Clad)

- Core recipe optimized for high optical efficiency and shortest device lengths
- Pump wavelength 910 - 980 nm
- Low-splice-loss achieved to conventional single-mode fiber and most commercially available passive double-clad fibers
- High conversion efficiency
- Patented cladding designs result in efficient mode mixing while maintaining good splice-ability
- Robust against 1 µm parasitics

Additional Features and Benefits (EY Glass Clad)

- Higher reliability: no optical power in contact with polymer coating, hence no coating degradation concerns
- Ease of assembly: Circular 125 µm outer cladding means that conventional telecom-grade splicers, cleavers, recoaters can be used
- Improves spliceability with conventional SM and MM passive fibers
- No low-index recoating necessary: even heat-shrink splice protector works well

<table>
<thead>
<tr>
<th>Properties</th>
<th>ErYb 130 (Double Clad)</th>
<th>ErYb 125 (Glass Clad)</th>
<th>ErYb PM 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core numerical aperture</td>
<td>0.17</td>
<td>>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>Cladding numerical aperture</td>
<td>0.45</td>
<td>>0.24</td>
<td>0.45</td>
</tr>
<tr>
<td>Mode field diameter @ 1550 nm</td>
<td>7 µm</td>
<td>7 µm</td>
<td>7 µm</td>
</tr>
<tr>
<td>Ytterbium clad absorption @ 915 nm</td>
<td>>1.2 dB/m</td>
<td>>1.5 dB/m</td>
<td>>0.5 dB/m</td>
</tr>
<tr>
<td>Star cladding diameter</td>
<td>130 µm</td>
<td>105 µm</td>
<td>Not specified</td>
</tr>
<tr>
<td>Beat length @ 1060 nm</td>
<td>N/A</td>
<td>N/A</td>
<td><4.0 mm</td>
</tr>
<tr>
<td>Beat length @ 1550 nm</td>
<td>N/A</td>
<td>N/A</td>
<td><6.0 mm</td>
</tr>
<tr>
<td>Circular cladding diameter</td>
<td>N/A</td>
<td>125 µm</td>
<td>125 µm</td>
</tr>
<tr>
<td>Coating outer diameter</td>
<td>250 µm</td>
<td>250 µm</td>
<td>250 µm</td>
</tr>
</tbody>
</table>

Mechanical and Testing Data

- Proof test level: 100 kpsi
- Order by Part Number: 552 HPWR 510, 552 HPWR 065, 300 380 334
Cladding-Pumped Optical Fibers

Ytterbium, Ytterbium PM Double Clad

The single-mode core of this optical fiber is doped with ytterbium. It is then surrounded by a silica cladding and covered with a low-index protective coating. These fibers enable fiber lasers and amplifiers with good beam profile characteristics, high wallplug efficiencies, compact footprints, superior reliability, and maintenance-free operation. They also accommodate high energies during pulsed operation and at high repetition rates.

Typical Applications
- Fiber lasers
- Fiber amplifiers
- High-energy, pulsed operation

Ytterbium

The single-mode core of this fiber is doped with ytterbium. It is then surrounded by a silica cladding and covered with a low-index protective coating. The resulting double-clad fiber is used for single-mode fiber lasers and amplifiers operating in the 1040 to 1200 nm range.

Typical Applications
- Construction of single-mode fiber lasers emitting at 1040 to 1200 nm

Features and Benefits
- Star-shaped cladding gives efficient mode mixing and improves spliceability
- Low-index polymer coating maintains strength and gives high cladding NA

Ytterbium PM (Double Clad)

Ytterbium double-clad PM optical fibers are used for single-mode optical fiber lasers and amplifiers operating in the 1040 to 1200 nm range with polarized outputs.

Features and Benefits
- Ytterbium concentrations optimized for efficiency
- Lowsplice-loss achieved to conventional single-mode fiber and most commercially available passive double-clad fibers

<table>
<thead>
<tr>
<th>Properties</th>
<th>Yb 130</th>
<th>Yb PM 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core numerical aperture</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Cladding numerical aperture</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Mode field diameter @ 1550 nm</td>
<td>6 µm</td>
<td>6 µm</td>
</tr>
<tr>
<td>Ytterbium clad absorption @ 915 nm</td>
<td>>0.5 dB/m</td>
<td>>0.5 dB/m</td>
</tr>
<tr>
<td>Beat length @ 1060 nm</td>
<td>Not Specified</td>
<td><4.0 mm</td>
</tr>
<tr>
<td>Beat length @ 1550 nm</td>
<td>Not Specified</td>
<td><6.0 mm</td>
</tr>
<tr>
<td>Circular cladding diameter</td>
<td>Not Specified</td>
<td>125 µm</td>
</tr>
<tr>
<td>Coating outer diameter</td>
<td>250 µm</td>
<td>250 µm</td>
</tr>
</tbody>
</table>

Mechanical and Testing Data

<table>
<thead>
<tr>
<th>Proof test level</th>
<th>100 kpsi</th>
<th>100 kpsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order by Part Number</td>
<td>107 986 820</td>
<td>552 HPWR 004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yb 130 Double Clad</th>
<th>Yb PM 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Core</td>
</tr>
<tr>
<td>Inner Cladding</td>
<td>Inner Cladding</td>
</tr>
<tr>
<td>Coating</td>
<td>Coating</td>
</tr>
<tr>
<td>130 µm</td>
<td>125 µm</td>
</tr>
</tbody>
</table>
Cladding Pumped Optical Fibers

Laser and Amplifier

Cladding Pumped Fiber LASER (CPFL)

- 7 Broad Area Emitters
- Fiber Bragg Gratings

Output Wavelength:
- 1064 nm
- 1083 nm
- 1100 nm
- 1117 nm

Cladding Pumped Fiber AMPLIFIER (CPFA)

- 6 Broad Area Emitters
- SIGNAL
 - 1.00 m or 1.55 m

Cladding Pumped Fibers

- Also Available Separately

Combiners for CPF Lasers

- Multimode Input (105/125 µm)
- CPF Output (0.45 NA)

Cladding Pumped Fiber Gain Module Configurations

- Includes Combiner and Cladding Pumped Fiber Gain Module Configurations
- Yb, PM Yb, ErYb Double & Glass Clad, PM ErYb

For additional information please contact your sales representative. You can also visit our website at www.ofsoptics.com or call 1-888-FIBER-HELP (1-888-342-3743) from inside the USA or 1-770-798-5555 from outside the USA.

EMEA Specific: +49 (0) 228 7489 201

OFS reserves the right to make changes to the prices and product(s) described in this document at any time without notice. This document is for informational purposes only and is not intended to modify or supplement any OFS warranties or specifications relating to any of its products or services.

Copyright © 2019 OFS Fitel, LLC. All rights reserved.

OFS
Marketing Communications 01/19